España.
Un equipo de investigadores de la Universidad Politécnica de Madrid, ha desarrollado nuevos conceptos de diseño para integrar la mecánica y la electrónica dentro de la mano de un robot humanoide, que permite una comunicación más amigable con los humanos y favorece su interacción social.
ManoPla es una mano robótica cuya finalidad es la comunicación gestual. Ha sido ideada y desarrollada por investigadores del Centro de Automática y Robótica (CAR), un centro mixto de investigación de la Universidad Politécnica de Madrid (UPM) y el Consejo Superior de Investigaciones Científicas (CSIC).
Su diseño está inspirado en una mano real, y es de bajo peso. Con este objetivo, se han adoptado soluciones imaginativas y originales en su desarrollo. ManoPla permitirá a robots guía o de asistencia transmitir, de forma más natural, el énfasis, ciertos sentimientos y emociones, enriqueciendo de esta forma la comunicación humano-robot.
En la robótica social, se busca de forma particular una interacción amigable y natural con el ser humano. En una conversación con otra persona, la comunicación gestual puede ser tan rica e incluso más elocuente que la verbal. Por ese motivo, en la última década, existen muchos desarrollos e investigaciones que se centran en esa capacidad interactiva del robot.
Por ejemplo, en la Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI) de la UPM, se ha desarrollado un robot social humanoide Hidalgo y, para él, se decidió diseñar una mano robótica lo más parecida a la mano humana en cuanto a términos de movilidad.
Los ensayos realizados de impacto, de movilidad y de agarre han despertado interés en el ámbito de la robótica social, de modo que parte de su desarrollo ha sido publicado en la revista International Journal of Social Robotics.
Cada elemento tiene su función
El resultado de esta investigación, llevada adelante por investigadores del grupo de Robótica y Cibernética en el CAR-UPM-CSIC, es un prototipo funcional con 17 articulaciones controlables más cuatro pasivas.
Las cuatro articulaciones de los dedos son impulsadas por tres motores (siguiendo el modelo propuesto por el astronauta humanoide Robonaut). El pulgar, por su singularidad, controla las cuatro articulaciones con las que se ha modelado. Además, la palma puede combarse, logrando emular de una forma excepcional la morfología humana y sus movimientos.
Dado que ManoPLA es totalmente autocontenida, tanto por los sistemas de actuación como por el control (cuenta con su propio microcontrolador para regular todos los movimientos y medir y servir la información), el problema físico más relevante que se ha dado es la limitación del espacio que ofrece el dispositivo.
La utilización de métodos de diseño mecatrónicos que ponen en común los tres campos tratados —mecánica, electrónica y programación— ha hecho posible la elaboración del prototipo final totalmente funcional. En este diseño se aprovecha todo. Esto quiere decir que la placa electrónica es estructural, e incluso lleva integrados todos los sensores posibles, adaptando la mecánica de los dedos y de los sensores para que esto sea posible. Además, se han desarrollado soluciones específicas para lograr accionamientos elásticos con unos transductores articulares ópticos de configuración y diseño novedoso y específico.
Todas estas soluciones hacen que la mano sea un proyecto de ingeniería minucioso, con identidad propia, que ha buscado constantemente soluciones alternativas a problemas de difícil resolución. El diseño software ha sido estudiado en detalle para lograr un control absoluto en la mano robótica. Gracias a la programación del microcontrolador a bajo nivel se han podido optimizar los ciclos de ejecución y se han controlado las frecuencias de procesamiento de cada uno de los elementos.
Tampoco la apariencia externa que tiene la mano es meramente decorativa. Cada una de las piezas, tanto de los dedos como de la palma, forman parte de algún mecanismo interno, por lo que la apariencia final viene totalmente ligada por la funcionalidad.
En total, ManoPla pesa solo 250 gramos, integra 17 motores y 17 sensores, y cuenta con 22 articulaciones, con su respectiva electrónica de potencia y su sistema de control. Lo único que no integra es una batería, dado que se considera que siempre tendrá que estar soportada por un brazo robótico a través del cual le llega la energía necesaria para su funcionamiento.
Referencia:
M. Hernando et al. «Mechatronic design of a self-contained dexterous robotic Hand for gestural communication». International Journal of Social Robotics (2023).
- La focaccia: una tradición culinaria neolítica de hace 9.000 años - noviembre 25, 2024
- El Hospital La Paz implanta un dispositivo cardíaco intracorpóreo a una niña de 12 años - noviembre 25, 2024
- Los agujeros negros heredan los campos magnéticos de sus estrellas ‘madre’ - noviembre 22, 2024